首页> 外文OA文献 >A wavelet-based neural model to optimize and read out a temporal population code
【2h】

A wavelet-based neural model to optimize and read out a temporal population code

机译:基于小波的神经模型,用于优化和读取时间人口代码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It has been proposed that the dense excitatory local connectivity of the neo-cortex plays a specific role in the transformation of spatial stimulus information into a temporal representation or a temporal population code (TPC). TPC provides for a rapid, robust, and high-capacity encoding of salient stimulus features with respect to position, rotation, and distortion. The TPC hypothesis gives a functional interpretation to a core feature of the cortical anatomy: its dense local and sparse long-range connectivity. Thus far, the question of how the TPC encoding can be decoded in downstream areas has not been addressed. Here, we present a neural circuit that decodes the spectral properties of the TPC using a biologically plausible implementation of a Haar transform. We perform a systematic investigation of our model in a recognition task using a standardized stimulus set. We consider alternative implementations using either regular spiking or bursting neurons and a range of spectral bands. Our results show that our wavelet readout circuit provides for the robust decoding of the TPC and further compresses the code without loosing speed or quality of decoding. We show that in the TPC signal the relevant stimulus information is present in the frequencies around 100 Hz. Our results show that the TPC is constructed around a small number of coding components that can be well decoded by wavelet coefficients in a neuronal implementation. The solution to the TPC decoding problem proposed here suggests that cortical processing streams might well consist of sequential operations where spatio-temporal transformations at lower levels forming a compact stimulus encoding using TPC that are subsequently decoded back to a spatial representation using wavelet transforms. In addition, the results presented here show that different properties of the stimulus might be transmitted to further processing stages using different frequency components that are captured by appropriately tuned wavelet-based decoders.
机译:已经提出,新皮层的密集的兴奋性局部连通性在将空间刺激信息转换成时间表示或时间人口代码(TPC)中起特定作用。 TPC提供了针对位置,旋转和变形的显着刺激特征的快速,鲁棒和大容量编码。 TPC假设对皮质解剖结构的核心特征提供了功能解释:其密集的局部和稀疏的远程连接。到目前为止,尚未解决如何在下游区域中解码TPC编码的问题。在这里,我们介绍了一种神经回路,该回路使用Haar变换的生物学上合理的实现来解码TPC的光谱特性。我们使用标准化刺激集对识别任务中的模型进行系统的研究。我们考虑使用常规尖峰或爆发神经元和一系列光谱带的替代实现。我们的结果表明,我们的小波读出电路可为TPC提供可靠的解码,并在不降低解码速度或质量的情况下进一步压缩代码。我们表明,在TPC信号中,相关的激励信息存在于100 Hz左右的频率中。我们的结果表明,TPC是围绕少量编码组件构建的,在神经元实现中,这些编码组件可以通过小波系数很好地进行解码。这里提出的TPC解码问题的解决方案表明,皮质处理流很可能由顺序操作组成,其中较低级别的时空变换形成了使用TPC的紧凑激励编码,随后又使用小波变换解码回了空间表示。另外,此处呈现的结果表明,刺激的不同属性可能会使用通过适当调谐的基于小波的解码器捕获的不同频率分量传输到进一步的处理阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号